By Topic

Robust 3D object pose estimation from a single 2D image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chia-Ming Cheng ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Hsiao-Wei Chen ; Tung-Ying Lee ; Shang-Hong Lai
more authors

In this paper, we propose a robust algorithm for 3D object pose estimation from a single 2D image. The proposed pose estimation algorithm is based on modifying the traditional image projection error function to a sum of squared image projection errors weighted by their associated distances. By using an Euler angle representation, we formulate the energy minimization for the pose estimation problem as searching a global minimum solution. Based on this framework, the proposed algorithm employs robust techniques to detect outliers in a coarse-to-fine fashion, thus providing very robust pose estimation. Our experiments show that the algorithm outperforms previous methods under noisy conditions.

Published in:

Visual Communications and Image Processing (VCIP), 2011 IEEE

Date of Conference:

6-9 Nov. 2011