By Topic

Cost-Effective TSV Grouping for Yield Improvement of 3D-ICs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Zhao ; Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK ; Khursheed, S. ; Al-Hashimi, B.M.

Three-dimensional Integrated Circuits (3D-ICs) vertically stack multiple silicon dies to reduce overall wire length, power consumption, and allow integration of heterogeneous technologies. Through-silicon-vias (TSVs) which act as vertical links between layers pose challenges for 3D integration design. TSV defects can happen in fabrication process and bonding stage, which can reduce the yield and increase the cost. Recent work proposed the employment of redundant TSVs to improve the yield of 3D-ICs. This paper presents a redundant TSVs grouping technique, which partitions regular and redundant TSVs into groups. For each group, a set of multiplexers are used to select good signal paths away from defective TSVs. We investigate the impact of grouping ratio (regular-to-redundant TSVs in one group) on trade-off between yield and hardware overhead. We also show probabilistic models for yield analysis under the influence of independent and clustering defect distributions. Simulation results show that for a given number of TSVs and TSV failure rate, careful selection of grouping ratios lead to achieving 100% yield at minimal hardware cost (number of multiplexers and redundant TSVs) in comparison to a design that does not exploit TSV grouping ratios.

Published in:

Test Symposium (ATS), 2011 20th Asian

Date of Conference:

20-23 Nov. 2011