By Topic

A minimax linear quadratic Gaussian method for antiwindup control synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Obaid Ur Rehman ; School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, Australia ; Ian R. Petersen ; Barış Fidan

In this paper, a dynamic antiwindup compensator design is proposed which augments the main controller and guarantees robust performance in the event of input saturation. This is a two stage process in which first a robust optimal controller is designed for an uncertain linear system which guarantees the internal stability of the closed loop system and provides robust performance in the absence of input saturation. Then a minimax linear quadratic Gaussian (LQG) compensator is designed to guarantee the performance in certain domain of attraction, in the presence of input saturation. This antiwindup augmentation only comes into action when plant is subject to input saturation. In order to illustrate the effectiveness of this approach, the proposed method is applied to a tracking control problem for an air-breathing hypersonic flight vehicle (AHFV).

Published in:

Australian Control Conference (AUCC), 2011

Date of Conference:

10-11 Nov. 2011