Cart (Loading....) | Create Account
Close category search window
 

Modeling, synthesis, and validation of heterogeneous biomedical embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Schirner, G. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA

The increasing performance and availability of embedded systems increases their attractiveness for biomedical applications. With advances in sensor processing and classification algorithms, real-time decision support in patient monitoring becomes feasible. However, the gap between algorithm design and their embedded realization is growing. This paper overviews an approach for development of biomedical devices at an abstract algorithm level with automatic generation of an embedded implementation. Based on a case study of a Brain Computer Interface (BCI), this paper demonstrates capturing, modeling and synthesis of such applications.

Published in:

High Level Design Validation and Test Workshop (HLDVT), 2011 IEEE International

Date of Conference:

9-11 Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.