Cart (Loading....) | Create Account
Close category search window
 

A Heterogeneous Parallel Framework for Domain-Specific Languages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Brown, K.J. ; Stanford Univ., Stanford, CA, USA ; Sujeeth, A.K. ; Hyouk Joong Lee ; Rompf, T.
more authors

Computing systems are becoming increasingly parallel and heterogeneous, and therefore new applications must be capable of exploiting parallelism in order to continue achieving high performance. However, targeting these emerging devices often requires using multiple disparate programming models and making decisions that can limit forward scalability. In previous work we proposed the use of domain-specific languages (DSLs) to provide high-level abstractions that enable transformations to high performance parallel code without degrading programmer productivity. In this paper we present a new end-to-end system for building, compiling, and executing DSL applications on parallel heterogeneous hardware, the Delite Compiler Framework and Runtime. The framework lifts embedded DSL applications to an intermediate representation (IR), performs generic, parallel, and domain-specific optimizations, and generates an execution graph that targets multiple heterogeneous hardware devices. Finally we present results comparing the performance of several machine learning applications written in OptiML, a DSL for machine learning that utilizes Delite, to C++ and MATLAB implementations. We find that the implicitly parallel OptiML applications achieve single-threaded performance comparable to C++ and outperform explicitly parallel MATLAB in nearly all cases.

Published in:

Parallel Architectures and Compilation Techniques (PACT), 2011 International Conference on

Date of Conference:

10-14 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.