Cart (Loading....) | Create Account
Close category search window
 

Compiling Dynamic Data Structures in Python to Enable the Use of Multi-core and Many-core Libraries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bin Ren ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA ; Agrawal, G.

Programmer productivity considerations are increasing the popularity of interpreted languages like Python. At the same time, for applications where performance is important, these languages clearly lack even on uniprocessors. In addition, the use of dynamic data structures in a language like Python makes it very hard to use emerging libraries for enabling the execution on multi-core and many-core architectures. This paper presents a framework for compiling Python to use multi-core and many-core libraries. The key component of our framework involves a suite of algorithms for replacing dynamic and/or nested data structures by arrays, while minimizing unnecessary data copying costs. This involves a novel use of an existing partial redundancy elimination algorithm, development of a new demand-driven interprocedural partial redundancy algorithm, a data flow formulation for determining that the contents of the data structure are of the same type, and a linearization algorithm. We have evaluated our framework using data mining and two linear algebra applications written in pure Python. The key observations were: 1) the code generated by our framework is only 10% to 20% slower compared to the hand-written C code that invokes the same libraries, 2) our optimizations turn out to be significant for improving the performance in most cases, and 3) we outperform interpreted Python and the C++ code generated by an existing tool by one to two orders of magnitude.

Published in:

Parallel Architectures and Compilation Techniques (PACT), 2011 International Conference on

Date of Conference:

10-14 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.