Cart (Loading....) | Create Account
Close category search window
 

Link Prediction Based on Subgraph Evolution in Dynamic Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Juszczyszyn, K. ; Inst. of Comput. Sci., Wroclaw Univ. of Technol., Wroclaw, Poland ; Musial, K. ; Budka, M.

We propose a new method for characterizing the dynamics of complex networks with its application to the link prediction problem. Our approach is based on the discovery of network sub graphs (in this study: triads of nodes) and measuring their transitions during network evolution. We define the Triad Transition Matrix (TTM) containing the probabilities of transitions between triads found in the network, then we show how it can help to discover and quantify the dynamic patterns of network evolution. We also propose the application of TTM to link prediction with an algorithm (called TTM-predictor) which shows good performance, especially for sparse networks analyzed in short time scales. The future applications and research directions of our approach are also proposed and discussed.

Published in:

Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on

Date of Conference:

9-11 Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.