By Topic

Adaptive scheduling in dynamic flexible manufacturing systems: a dynamic rule selection approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sang Chan Park ; Dept. of Ind. Manage., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea ; Raman, N. ; Shaw, M.J.

This paper develops an adaptive scheduling policy for dynamic manufacturing systems. The main feature of this policy is that it tailors the dispatching rule to be used at a given point in time to the prevailing state of the system. The inductive learning methodology used for constructing this state-dependent scheduling policy also provides an understanding of the relative importance of the various system parameters in determining the appropriate dispatching rule. Experimental studies indicated the superiority of the suggested approach over the alternative approach involving the repeated application of a single dispatching rule for randomly generated test problems as well as a real system, and under both stationary and nonstationary conditions. In particular, its relative performance improves further when there are frequent disruptions, and when disruptions are caused by the introduction of tight due date jobs and machine breakdowns

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:13 ,  Issue: 4 )