By Topic

Soft Object Deformation Monitoring and Learning for Model-Based Robotic Hand Manipulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ana-Maria Cretu ; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ; Pierre Payeur ; Emil M. Petriu

This paper discusses the design and implementation of a framework that automatically extracts and monitors the shape deformations of soft objects from a video sequence and maps them with force measurements with the goal of providing the necessary information to the controller of a robotic hand to ensure safe model-based deformable object manipulation. Measurements corresponding to the interaction force at the level of the fingertips and to the position of the fingertips of a three-finger robotic hand are associated with the contours of a deformed object tracked in a series of images using neural-network approaches. The resulting model captures the behavior of the object and is able to predict its behavior for previously unseen interactions without any assumption on the object's material. The availability of such models can contribute to the improvement of a robotic hand controller, therefore allowing more accurate and stable grasp while providing more elaborate manipulation capabilities for deformable objects. Experiments performed for different objects, made of various materials, reveal that the method accurately captures and predicts the object's shape deformation while the object is submitted to external forces applied by the robot fingers. The proposed method is also fast and insensitive to severe contour deformations, as well as to smooth changes in lighting, contrast, and background.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:42 ,  Issue: 3 )