By Topic

Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yihyun Kim ; Rural Dev. Adm., Suwon, South Korea ; Jackson, T. ; Bindlish, R. ; Hoonyol Lee
more authors

Vegetation water content (VWC) is an important biophysical parameter and has a significant role in the retrieval of soil moisture using microwave remote sensing. Here, the radar vegetation index (RVI) was evaluated for estimating VWC. Analysis utilized a data set obtained by a ground-based multifrequency polarimetric scatterometer system, with a single incidence angle of 40°, during an entire growth period of rice and soybean. Temporal variations of the backscattering coefficients for the L-, C-, and X-bands, RVI, VWC, leaf area index, and normalized difference vegetation index were analyzed. The L-band RVI was found to be correlated to the different vegetation indices. Prediction equations for the estimation of VWC from the RVI were developed. The results indicated that it was possible to estimate VWC with an accuracy of 0.21 kg·m-2 using L-band RVI observations. These results demonstrate that valuable new information can be extracted from current and future radar satellite systems on the vegetation condition of two globally important crop types. The results are directly applicable to systems such as the proposed NASA Soil Moisture Active Passive satellite.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 4 )