By Topic

Detachable Object Detection: Segmentation and Depth Ordering from Short-Baseline Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alper Ayvaci ; University of California, Los Angeles ; Stefano Soatto

We describe an approach for segmenting a moving image into regions that correspond to surfaces in the scene that are partially surrounded by the medium. It integrates both appearance and motion statistics into a cost functional that is seeded with occluded regions and minimized efficiently by solving a linear programming problem. Where a short observation time is insufficient to determine whether the object is detachable, the results of the minimization can be used to seed a more costly optimization based on a longer sequence of video data. The result is an entirely unsupervised scheme to detect and segment an arbitrary and unknown number of objects. We test our scheme to highlight the potential, as well as limitations, of our approach.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 10 )