By Topic

Online Kernel Principal Component Analysis: A Reduced-Order Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Paul Honeine ; Université de Technologie de Troyes, Troyes

Kernel principal component analysis (kernel-PCA) is an elegant nonlinear extension of one of the most used data analysis and dimensionality reduction techniques, the principal component analysis. In this paper, we propose an online algorithm for kernel-PCA. To this end, we examine a kernel-based version of Oja's rule, initially put forward to extract a linear principal axe. As with most kernel-based machines, the model order equals the number of available observations. To provide an online scheme, we propose to control the model order. We discuss theoretical results, such as an upper bound on the error of approximating the principal functions with the reduced-order model. We derive a recursive algorithm to discover the first principal axis, and extend it to multiple axes. Experimental results demonstrate the effectiveness of the proposed approach, both on synthetic data set and on images of handwritten digits, with comparison to classical kernel-PCA and iterative kernel-PCA.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:34 ,  Issue: 9 )