By Topic

Unsupervised Learning of Categorical Segments in Image Collections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andreetto, M. ; Google Los Angeles (US-LAX-BIN), Venice, CA, USA ; Zelnik-Manor, L. ; Perona, P.

Which one comes first: segmentation or recognition? We propose a unified framework for carrying out the two simultaneously and without supervision. The framework combines a flexible probabilistic model, for representing the shape and appearance of each segment, with the popular “bag of visual words” model for recognition. If applied to a collection of images, our framework can simultaneously discover the segments of each image and the correspondence between such segments, without supervision. Such recurring segments may be thought of as the “parts” of corresponding objects that appear multiple times in the image collection. Thus, the model may be used for learning new categories, detecting/classifying objects, and segmenting images, without using expensive human annotation.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 9 )