By Topic

Fast Rotation Invariant 3D Feature Computation Utilizing Efficient Local Neighborhood Operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Skibbe, H. ; Dept. of Radiol., Med. Phys., Univ. Med. Center Freiburg, Freiburg, Germany ; Reisert, M. ; Schmidt, T. ; Brox, T.
more authors

We present a method for densely computing local rotation invariant image descriptors in volumetric images. The descriptors are based on a transformation to the harmonic domain, which we compute very efficiently via differential operators. We show that this fast voxelwise computation is restricted to a family of basis functions that have certain differential relationships. Building upon this finding, we propose local descriptors based on the Gaussian Laguerre and spherical Gabor basis functions and show how the coefficients can be computed efficiently by recursive differentiation. We exemplarily demonstrate the effectiveness of such dense descriptors in a detection and classification task on biological 3D images. In a direct comparison to existing volumetric features, among them 3D SIFT, our descriptors reveal superior performance.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 8 )