By Topic

Edge Structure Preserving 3D Image Denoising by Local Surface Approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peihua Qiu ; Sch. of Stat., Univ. of Minnesota, Minneapolis, MN, USA ; Mukherjee, P.S.

In various applications, including magnetic resonance imaging (MRI) and functional MRI (fMRI), 3D images are becoming increasingly popular. To improve the reliability of subsequent image analyses, 3D image denoising is often a necessary preprocessing step, which is the focus of the current paper. In the literature, most existing image denoising procedures are for 2D images. Their direct extensions to 3D cases generally cannot handle 3D images efficiently because the structure of a typical 3D image is substantially more complicated than that of a typical 2D image. For instance, edge locations are surfaces in 3D cases which would be much more challenging to handle compared to edge curves in 2D cases. We propose a novel 3D image denoising procedure in this paper, based on local approximation of the edge surfaces using a set of surface templates. An important property of this method is that it can preserve edges and major edge structures (e.g., intersections of two edge surfaces and pointed corners). Numerical studies show that it works well in various applications.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 8 )