By Topic

Demonstration of Photon Coupling in Dual Multiple-Quantum-Well Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Kan-Hua Lee ; Experimental Solid State Group, Department of Physics, Blackett Laboratory, Imperial College London, London, U.K. ; Keith W. J. Barnham ; James P. Connolly ; Benjamin C. Browne
more authors

Multiple-quantum-well (MQW) top cells can enhance the performance of multi-junction solar cells since the absorption edge of top and middle subcells can be tuned with the MQWs to maximize the efficiency. The radiative dominance of MQW top cells can enhance photon coupling, which can potentially reduce the spectral sensitivity of the device and, thus, raise the energy harvest. We present experimental results on photon coupling in dual-junction cells with GaInP top cells containing GaInAsP quantum wells along with theoretical calculation based on a detailed balance model. It is observed that at high concentration, approximately 50% of the dark current of an MQW top cell is transferred to the photocurrent of the cell in the bottom, which is much higher than any previously reported values.

Published in:

IEEE Journal of Photovoltaics  (Volume:2 ,  Issue: 1 )