By Topic

Realizability conditions and bounds on synthesis of switched-capacitor DC-DC voltage multiplier circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Makowski, M.S. ; Dept. of Electron., Tech. Univ. Gdansk, Poland

A formal study of the theoretical performance of switched-capacitor (SC) dc-dc voltage multiplier circuits is given. A question concerning the necessary number of circuit elements to realize a given conversion ratio is addressed. In response to the question the bound on attainable voltage ratio for a given number of capacitors k and the bound on the number of switches required in any circuit configuration have been established. The maximum step-up or step-down ratio is given by the kth Fibonacci number, while the bound on the number of switches required in any SC circuit is 3k-2. The complete set of attainable DC conversion ratios is found. A canonical circuit realization of the maximum voltage ratio is discussed and illustrative examples are included. Necessary and sufficient conditions for the realizability of a dc conversion ratio are determined and formal proofs are given

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:44 ,  Issue: 8 )