By Topic

Implications of observation-fact modifiers to i2b2 ontologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
London, J.W. ; Kimmel Cancer Center, Thomas Jefferson Univ., Philadelphia, PA, USA ; Chatterjee, D.

Biomedical translational research can be facilitated by integrating clinical and research data. In particular, study cohort identification and hypothesis generation is enabled by the mining of integrated clinical observations and research resources. The "informatics for integrating biology and the bedside, " or i2b2, framework is widely used for this biomedical data mining. The i2b2 "star schema" data model using entity-attribute-value (EA V) formatted concepts is a very efficient strategy for querying large amounts of data. However, until the most recent i2b2 release, the utility of the platform was somewhat constrained by the limitations on being able to express "facts about facts" - i.e., modify the observations about the patients. We have found that exploiting the new modifier functionality has significantly and favorably impacted the design of i2b2 ontologies, leading to easier and more meaningful query results.

Published in:

Bioinformatics and Biomedicine Workshops (BIBMW), 2011 IEEE International Conference on

Date of Conference:

12-15 Nov. 2011