By Topic

Analysis of finite-phased arrays of aperture-coupled stacked microstrip antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Byung-Jun Jang ; Multi-Media Res. Lab, LG Electronics Inc., Seoul, South Korea ; Yong-Kook Lee ; He-Won Moon ; Young-Joong Yoon
more authors

Analytical results for finite-phased arrays of aperture-coupled stacked microstrip antennas are presented. In order to evaluate the characteristics of aperture-coupled microstrip antennas in a finite array and derive the moment-method solutions for the unknown current distributions on the patches and slots, the reciprocity theorem and the spectral domain Green's functions for a dielectric slab are used. Various sized arrays are considered and compared with solutions for an infinite array. Numerical results are presented to illustrate the input impedance, mutual coupling, active reflection coefficient versus scan angle, radiation efficiency, and active-element gain patterns

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:45 ,  Issue: 8 )