By Topic

A novel framework for chimeric transcript detection based on accurate gene fusion model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Francesco Abate ; Dept. of Control & Comput. Eng., Politec. di Torino, Torino, Italy ; Andrea Acquaviva ; Elisa Ficarra ; Giulia Paciello
more authors

Next generation sequencing plays a key role in the detection of structural variations. Chimeric transcripts are relevant examples of such variations, as they are involved in several diseases. In this work, we propose an effective methodology for the detection of fused transcripts in RNA-Seq paired-end data. The proposed methodology is based on an accurate fusion model implemented by a set of filters reducing the impact of artifacts. Moreover, the methodology accounts for transcripts consistently expressing in the sample under study even if they are not annotated. The effectiveness of the proposed solution has been experimentally validated on of Chronic Myelogenous Leukemia (CML) samples, providing both the genes involved in the fusion and the exact chimeric sequence.

Published in:

Bioinformatics and Biomedicine Workshops (BIBMW), 2011 IEEE International Conference on

Date of Conference:

12-15 Nov. 2011