By Topic

Reactive Planning and Control of Planar Spring–Mass Running on Rough Terrain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Arslan, O. ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Saranli, U.

An important motivation for work on legged robots has always been their potential for high-performance locomotion on rough terrain. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments or rely on kinematic planning at low speeds. Moreover, the traditional separation of planning from control often has negative impact on the robustness of the system. In this paper, we introduce a new method for dynamic, fully reactive footstep planning for a planar spring-mass hopper, based on a careful characterization of the model dynamics and the design of an associated deadbeat controller, used within a sequential composition framework. This yields a purely reactive controller with a large domain of attraction that requires no explicit replanning during execution. We show in simulation that plans constructed for a simplified dynamic model can successfully control locomotion of a more complete model across rough terrain. We also characterize the performance of the planner over rough terrain and show that it is robust against both model uncertainty and measurement noise without replanning.

Published in:

Robotics, IEEE Transactions on  (Volume:28 ,  Issue: 3 )