Cart (Loading....) | Create Account
Close category search window

Interventional 4-D C-Arm CT Perfusion Imaging Using Interleaved Scanning and Partial Reconstruction Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Fieselmann, A. ; Dept. of Comput. Sci., Friedrich-Alexander Univ. of Erlangen-Nuremberg, Erlangen, Germany ; Ganguly, A. ; Deuerling-Zheng, Y. ; Zellerhoff, M.
more authors

Tissue perfusion measurement during catheter-guided stroke treatment in the interventional suite is currently not possible. In this work, we present a novel approach that uses a C-arm angiography system capable of computed tomography (CT)-like imaging (C-arm CT) for this purpose. With C-arm CT one reconstructed volume can be obtained every 4-6 s which makes it challenging to measure the flow of an injected contrast bolus. We have developed an interleaved scanning (IS) protocol that uses several scan sequences to increase temporal sampling. Using a dedicated 4-D reconstruction approach based on partial reconstruction interpolation (PRI) we can optimally process our data. We evaluated our combined approach (IS-PRI) with simulations and a study in five healthy pigs. In our simulations, the cerebral blood flow values (unit: ml/100 g/min) were 60 (healthy tissue) and 20 (pathological tissue). For one scan sequence the values were estimated with standard deviations of 14.3 and 2.9, respectively. For two interleaved sequences the standard deviations decreased to 3.6 and 1.5, respectively. We used perfusion CT to validate the in vivo results. With two interleaved sequences we achieved promising correlations ranging from r=0.63 to r=0.94. The results suggest that C-arm CT tissue perfusion imaging is feasible with two interleaved scan sequences.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 4 )

Date of Publication:

April 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.