By Topic

Local Color Vector Binary Patterns From Multichannel Face Images for Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seung Ho Lee ; Image and Video Systems Laboratory, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea, ; Jae Young Choi ; Yong Man Ro ; Konstantinos N. Plataniotis

This paper proposes a novel face descriptor based on color information, i.e., so-called local color vector binary patterns (LCVBPs), for face recognition (FR). The proposed LCVBP consists of two discriminative patterns: color norm patterns and color angular patterns. In particular, we have designed a method for extracting color angular patterns, which enables to encode the discriminating texture patterns derived from spatial interactions among different spectral-band images. In order to perform FR tasks, the proposed LCVBP feature is generated by combining multiple features extracted from both color norm patterns and color angular patterns. Extensive and comparative experiments have been conducted to evaluate the proposed LCVBP feature on five public databases. Experimental results show that the proposed LCVBP feature is able to yield excellent FR performance for challenging face images. In addition, the effectiveness of the proposed LCVBP feature has successfully been tested by comparing other state-of-the-art face descriptors.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 4 )