Cart (Loading....) | Create Account
Close category search window
 

Variational Adaptive Correlation Method for Flow Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Becker, F. ; Heidelberg Collaboratory for Image Process. & the Image & Pattern Anal. Group, Univ. of Heidelberg, Heidelberg, Germany ; Wieneke, B. ; Petra, S. ; Schroder, A.
more authors

A variational approach is presented to the estimation of turbulent fluid flow from particle image sequences in experimental fluid mechanics. The approach comprises two coupled optimizations for adapting size and shape of a Gaussian correlation window at each location and for estimating the flow, respectively. The method copes with a wide range of particle densities and image noise levels without any data-specific parameter tuning. Based on a careful implementation of a multiscale nonlinear optimization technique, we demonstrate robustness of the solution over typical experimental scenarios and highest estimation accuracy for an international benchmark data set (PIV Challenge).

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 6 )

Date of Publication:

June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.