Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Analysis and Optimization of SFDR in Differential Active-RC Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Meghdadi, M. ; Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; Bakhtiar, M.S.

This paper presents a method for optimizing SFDR in differential active-RC filters. Simple analytical expressions for noise and third-order intermodulation (IM3) distortion in active-RC filters are derived. The nonlinear behavior of two-stage Miller-compensated op amps, which are extensively used in active-RC implementations, is also modeled. These expressions and models are used to maximize SFDR in active-RC filters by means of proper admittance scaling and optimizing the share of each op amp in the total power consumption. It is shown that both the power consumption of the filter and its area can be significantly reduced, for a given SFDR, by exploiting the presented method.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:59 ,  Issue: 6 )