By Topic

Blind channel estimation using the second-order statistics: asymptotic performance and limitations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. H. Zeng ; Dept. of Electr. & Syst. Eng., Connecticut Univ., Storrs, CT, USA ; Lang Tong

We consider the asymptotic performance and fundamental limitations of the class of blind estimators that use second-order statistics. An achievable lower bound of the asymptotic normalized mean-square error (ANMSE) is derived. It is shown that the achievable ANMSE is lower bounded by the condition number of the Jacobian matrix of the correlation function with respect to the channel parameters. It is shown next that the Jacobian matrix is singular if and only if the subchannels share common conjugate reciprocal zeros. This condition is different from the existing channel identification conditions. Asymptotic performance of some existing eigenstructure-based algorithms is analyzed. Closed-form expressions of ANMSE and their lower bounds are derived for the least-squares (LS) and the subspace (SS) blind channel estimators when there are two subchannels. Asymptotic efficiency of LS/SS algorithms is also evaluated, showing that significant performance improvement is possible when the information of the source correlation is exploited

Published in:

IEEE Transactions on Signal Processing  (Volume:45 ,  Issue: 8 )