By Topic

Cisoid parameter estimation in the colored noise case: asymptotic Cramer-Rao bound, maximum likelihood, and nonlinear least-squares

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stoica, Petre ; Dept. of Technol., Uppsala Univ., Sweden ; Jakobsson, A. ; Jian Li

The problem of estimating the parameters of complex-valued sinusoidal signals (cisoids, for short) from data corrupted by colored noise occurs in many signal processing applications. We present a simple formula for the asymptotic (large-sample) Cramer-Rao bound (CRB) matrix associated with this problem. The maximum likelihood method (MLM), which estimates both the signal and noise parameters, attains the performance corresponding to the asymptotic CRB, as the sample length increases. More interestingly, we show that a computationally much simpler nonlinear least-squares method (NLSM), which estimates the signal parameters only, achieves the same performance in large samples

Published in:

Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 8 )