By Topic

Study of forecasting renewable energies in smart grids using linear predictive filters and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Anvari Moghaddam, A. ; Dept. of Power & Control, Shiraz Univ., Shiraz, Iran ; Seifi, A.R.

Accurate forecasting of renewable energies such as wind and solar has become one of the most important issues in developing smart grids. Therefore introducing suitable means of weather forecasting with acceptable precision becomes a necessary task in today's changing power world. In this work, an intelligent way for hourly estimation of both wind speed and solar radiation in a typical smart grid has been proposed and its superior performance is compared to those of conventional methods and neural networks (NNs). The methodology is based on linear predictive coding and digital image processing principles using two dimensional (2-D) finite impulse response filters. Meteorological data have been collected during the period 1 January 2009 to 31 December 2009 from Casella automatic weather station (AWS) at Plymouth, UK. Numerical results indicate that a considerable improvement in forecasting process is achieved with 2-D predictive filtering compared to the conventional approaches.

Published in:

Renewable Power Generation, IET  (Volume:5 ,  Issue: 6 )