Cart (Loading....) | Create Account
Close category search window
 

Solid-state sensor incorporated in microfluidic chip and magnetic-bead enzyme immobilization approach for creatinine and glucose detection in serum

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yen-Heng Lin ; Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan ; Chiang, Chien-Hung ; Min-Hsien Wu ; Tung-Ming Pan
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3671078 

Solid-state sensors are stable and inexpensive electric transducers for biomedical measurement. This study proposes a microfluidic chip incorporated with a solid-state sensor for measuring glucose and creatinine in blood serum. Magnetic beads are employed to immobilize enzymes and deliver them in a micro-channel. Glucose and creatinine can be measured at 2–8 mM and 10-2 to 10 mM, respectively, which is a meaningful range in human blood. The immobilization approach also addresses the issue of the long-term preservation of enzymes in microfluidic devices. The proposed device is suitable for multi-target measurement in a point-of-care system.

Published in:

Applied Physics Letters  (Volume:99 ,  Issue: 25 )

Date of Publication:

Dec 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.