Cart (Loading....) | Create Account
Close category search window
 

High-efficiency bidirectional DC-DC converter with coupled inductor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duan, R.-Y. ; Dept. of Safety, Health & Environ. Eng., Hungkuang Univ., Taichung, Taiwan ; Lee, J.-D.

This study presents a novel soft-switching bidirectional dc-dc converter with a coupled inductor. Transformer-based circuit topologies are commonly employed in conventional bidirectional converters and soft-switching techniques, including zero-voltage switching (ZVS) or zero-current switching (ZCS), are frequently applied to mitigate switching losses. Unfortunately, the use of more than four switches and several diodes in these transformer-based schemes increase production costs and reduce conversion efficiency. This work presents a coupled-inductor bidirectional converter scheme that utilises four power switches to achieve the goal of bidirectional current control. The high step-up and step-down ratios enable a battery module current with a low-voltage level to be injected into a high-voltage dc bus for subsequent utilisation. Experimental results based on a 24 V/200 V 800 W prototype are provided to verify the effectiveness of the proposed bidirectional converter. Since the voltage clamping, synchronous rectification and soft-switching techniques are utilised in the proposed circuit topology and the corresponding device specifications are adequately fulfilled, the proposed converter can provide highly efficient bidirectional power conversion in a wide range on the low-voltage side.

Published in:

Power Electronics, IET  (Volume:5 ,  Issue: 1 )

Date of Publication:

January 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.