By Topic

Edge-Preserving Image Regularization Based on Morphological Wavelets and Dyadic Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiang, Z.J. ; Dept. of Electr. Eng., Princeton Univ., Princeton, NJ, USA ; Ramadge, P.J.

Despite the tremendous success of wavelet-based image regularization, we still lack a comprehensive understanding of the exact factor that controls edge preservation and a principled method to determine the wavelet decomposition structure for dimensions greater than 1. We address these issues from a machine learning perspective by using tree classifiers to underpin a new image regularizer that measures the complexity of an image based on the complexity of the dyadic-tree representations of its sublevel sets. By penalizing unbalanced dyadic trees less, the regularizer preserves sharp edges. The main contribution of this paper is the connection of concepts from structured dyadic-tree complexity measures, wavelet shrinkage, morphological wavelets, and smoothness regularization in Besov space into a single coherent image regularization framework. Using the new regularizer, we also provide a theoretical basis for the data-driven selection of an optimal dyadic wavelet decomposition structure. As a specific application example, we give a practical regularized image denoising algorithm that uses this regularizer and the optimal dyadic wavelet decomposition structure.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )