Cart (Loading....) | Create Account
Close category search window
 

Interactive Image Segmentation Using Dirichlet Process Multiple-View Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Ding ; Intent Media Inc., New York, NY, USA ; Yilmaz, A. ; Rong Yan

Segmenting semantically meaningful whole objects from images is a challenging problem, and it becomes especially so without higher level common sense reasoning. In this paper, we present an interactive segmentation framework that integrates image appearance and boundary constraints in a principled way to address this problem. In particular, we assume that small sets of pixels, which are referred to as seed pixels, are labeled as the object and background. The seed pixels are used to estimate the labels of the unlabeled pixels using Dirichlet process multiple-view learning, which leverages 1) multiple-view learning that integrates appearance and boundary constraints and 2) Dirichlet process mixture-based nonlinear classification that simultaneously models image features and discriminates between the object and background classes. With the proposed learning and inference algorithms, our segmentation framework is experimentally shown to produce both quantitatively and qualitatively promising results on a standard dataset of images. In particular, our proposed framework is able to segment whole objects from images given insufficient seeds.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

April 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.