By Topic

Synchronization of Markovian Coupled Neural Networks With Nonidentical Node-Delays and Random Coupling Strengths

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xinsong Yang ; Dept. of Math., Honghe Univ., Mengzi, China ; Jinde Cao ; Jianquan Lu

In this paper, a general model of coupled neural networks with Markovian jumping and random coupling strengths is introduced. In the process of evolution, the proposed model switches from one mode to another according to a Markovian chain, and all the modes have different constant time-delays. The coupling strengths are characterized by mutually independent random variables. When compared with most of existing dynamical network models which share common time-delay for all modes and have constant coupling strengths, our model is more practical because different chaotic neural network models can have different time-delays and coupling strength of complex networks may randomly vary around a constant due to environmental and artificial factors. By designing a novel Lyapunov functional and using some inequalities and the properties of random variables, we derive several new sufficient synchronization criteria formulated by linear matrix inequalities. The obtained criteria depend on mode-delays and mathematical expectations and variances of the random coupling strengths as well. Numerical examples are given to demonstrate the effectiveness of the theoretical results, meanwhile right-continuous Markovian chain is also presented.

Published in:

Neural Networks and Learning Systems, IEEE Transactions on  (Volume:23 ,  Issue: 1 )