By Topic

Workpiece Property Effect on Resistance Spot Welding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Je-Ee Ho ; Dept. of Mech. & Electro-Mech. Eng., Nat. Ilan Univ., Ilan, Taiwan ; Peng-Sheng Wei ; Tzong-Huei Wu

The weldability of resistance spot welding affected by different thermal, physical, and metallurgical properties is extensively investigated by realistically computing transient mass, momentum, energy, species, and magnetic field intensity transport in the alloy workpieces and electrodes. The properties considered are the thickness, radius, equilibrium partition coefficient of workpieces, electrode-to-workpiece electrical conductivity ratio, thermal conductivity ratio, and a joule heat-to-enthalpy change parameter. Resistance spot welding has been widely used in joining thin workpieces in various electronic packaging and manufacturing industries. Understanding of physical mechanisms for easily manipulating and controlling weld qualities in advance is important. This paper accounts for electromagnetic force, heat generations due to contact resistances at the electrode-workpiece interface and faying surface between workpieces, and temperature-dependent bulk resistance of the workpiece. The contact resistances are functions of hardness, temperature, electrode force, and surface condition. The computed results in general dimensionless expressions show that the welding is feasible or onset time is shortened by decreasing thickness, radius, equilibrium partition coefficient of the workpiece, and electrode-to-workpiece electrical conductivity and thermal conductivity ratios, and increasing the joule heat-to-enthalpy change parameter. The corresponding heat transfer and species patterns are also presented.

Published in:

Components, Packaging and Manufacturing Technology, IEEE Transactions on  (Volume:2 ,  Issue: 6 )