By Topic

An Indirect Impedance Characterization Method for Monolithic THz Antennas Using Coplanar Probe Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Topalli, K. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Trichopoulos, G.C. ; Sertel, K.

We develop a simple and robust impedance characterization method for planar THz antennas with micron- and submicron-size port geometries. Such antennas are often encountered in THz sensing applications where an ultrafast electronic device, such as a Schottky junction or a heterostructure backward diode, is integrated with a planar antenna structure. Standard probe characterization of such antennas at the device port is not currently possible due to the large contact areas required. The proposed method allows for indirect characterization of antenna impedance seen at the device port using measurements collected at a more suitable, remote location on the antenna plane. Three S11 measurements are performed using contact probes at a larger pad on the antenna periphery, using three terminations (short, open, and a resistive load) of the port under consideration. Through a simple relation, the measured data set is used to compute the port-impedance indirectly. Experimental results are presented to illustrate the accuracy of the proposed approach.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:11 )