Cart (Loading....) | Create Account
Close category search window

Development of Interferometric Excitation Device for Micro Optical Diffusion Sensor Using Laser-Induced Dielectrophoresis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Oka, T. ; Dept. of Syst. Design Eng., Keio Univ., Yokohama, Japan ; Itani, K. ; Taguchi, Y.. ; Nagasaka, Y.

A novel micro optical diffusion sensor (MODS) has been developed that enables high-speed, on-site sensing with a small sample volume and without the use of additives. The diffusion coefficient can be measured by observing the mass diffusion process of the concentration distribution generated by laser-induced dielectrophoresis. In this paper, we propose a novel excitation system using a micro Fresnel mirror (MFM) that consists of two angled micromirrors and can provide interferometric excitation suitable for forming a sinusoidal concentration distribution. In this paper, MFM was successfully fabricated, and mirror angles were in good agreement with the design values calculated by the finite-element method. The contrast of the interference fringe induced by the fabricated MFM was sharp, and its visibility was 0.97. In addition, the diffusion phenomenon induced by MFM was successfully observed as the decay of the diffracted light intensity. As a result, the validity of MFM as an interferometric excitation device for MODS was confirmed.

Published in:

Microelectromechanical Systems, Journal of  (Volume:21 ,  Issue: 2 )

Date of Publication:

April 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.