By Topic

A Novel Approach to Optical Switching for Intradatacenter Networking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Limei Peng ; Sch. of Electron. & Inf. Eng., SooChow Univ., Suzhou, China ; Chan-Hyun Youn ; Wan Tang ; Chunming Qiao

In this paper, we propose to apply a novel paradigm called labeled optical burst switching with home circuit (LOBS-HC) for intradatacenter networking to provide a high bisection bandwidth and significantly reduce the cost and energy consumption associated with electronic packet switching. The unique features of LOBS-HC that make it more suitable than either optical circuit switching (OCS) or optical packet/burst switching are exploited to enable all-to-all communications with a guaranteed lossless transmission bandwidth between any given pair of pods, while also supporting bursty transmissions through wavelength-sharing among home circuits (HCs) and statistical multiplexing. As a case study, hypercube-like topologies are considered for the interconnection among the pods within a datacenter. In particular, we first propose a simple but efficient HC assignment scheme called complementary HC for 2-D cube or ring, and then extend our works to n-cube and generalized hypercube by applying the concept of spanning balanced tree (SBT) for their HC assignment. Our analysis results show that with such datacenters, the minimum number of wavelengths needed in each case is significantly reduced from that needed with OCS and also, the network cost in terms of wires and transceivers needed is considerably reduced from that incurs with datacenters using electronic packet switching. We then evaluate the traffic performance of such hypercube-based datacenters using LOBS-HC through simulation experiments via the OPNET simulator. The performance results obtained for a variety of communication patterns and traffic models within a datacenter demonstrate the feasibility of the proposed approach.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 2 )