By Topic

TEM Study of Local Conduction Mechanisms in Model Specimens of Ag-Based Conductive Adhesive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Keita Kurosu ; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan ; Naoyuki Kawamoto ; Yasukazu Murakami ; Daisuke Shindo

The conduction mechanisms of silver (Ag)-based conductive adhesives, which consist of metallic Ag particles and an epoxy resin, are discussed on the basis of transmission electron microscopy (TEM) studies and local conductivity measurements of model specimens. A small electrical current was observed in the model specimens, in which a thin epoxy layer was sandwiched between Ag electrodes. TEM observations demonstrated that the irreversible changes in the current versus voltage characteristics occurred along with microstructural changes in the Ag electrode, which was subjected to a large electrical current. Calculated equipotential lines indicated a considerable change in the electric field distribution near a small horn that was formed in the surface of the Ag electrode. The results provide useful information for understanding local conduction in the cured adhesive.

Published in:

IEEE Transactions on Components, Packaging and Manufacturing Technology  (Volume:2 ,  Issue: 2 )