By Topic

Size dependent biexciton binding energies in GaN quantum dots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Amloy, S. ; Department of Physics, Chemistry, and Biology (IFM), Linköping University, S-58183 Linköping, Sweden ; Yu, K.H. ; Karlsson, K.F. ; Farivar, R.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Single GaN/Al(Ga)N quantum dots (QDs) have been investigated by means of microphotoluminescence. Emission spectra related to excitons and biexcitons have been identified by excitation power dependence and polarization resolved spectroscopy. All investigated dots exhibit a strong degree of linear polarization (∼90%). The biexciton binding energy scales with the dot size. However, both positive and negative binding energies are found for the studied QDs. These results imply that careful size control of III-Nitride QDs would enable the emission of correlated photons with identical frequencies from the cascade recombination of the biexciton, with potential applications in the area of quantum information processing.

Published in:

Applied Physics Letters  (Volume:99 ,  Issue: 25 )