By Topic

A class of least-squares filtering and identification algorithms with systolic array architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kalson, S.Z. ; MIT Lincoln Lab., Lexington, MA, USA ; Yao, K.

A unified approach is presented for deriving a large class of new and previously known time and order recursive least-squares algorithms with systolic array architectures, suitable for high throughput rate and VLSI implementations of space-time filtering and system identification problems. The geometrical derivation given is unique in that no assumption is made concerning the rank of the sample data correlation matrix. This method utilizes and extends the concept of oblique projections, as used previously in the derivations of the least-squares lattice algorithms. Both the growing and sliding memory, exponentially weighted least-squares criteria are considered

Published in:

Information Theory, IEEE Transactions on  (Volume:37 ,  Issue: 1 )