Cart (Loading....) | Create Account
Close category search window

Registration of Images With Varying Topology Using Embedded Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoxing Li ; GE Global Res., Niskayuna, NY, USA ; Xiaojing Long ; Laurienti, P. ; Wyatt, C.

This paper presents registration via embedded maps (REM), a deformable registration algorithm for images with varying topology. The algorithm represents 3-D images as 4-D manifolds in a Riemannian space (referred to as embedded maps). Registration is performed as a surface evolution matching one embedded map to another using a diffusion process. The approach differs from those existing in that it takes an a priori estimation of image regions where topological changes are present, for example lesions, and generates a dense vector field representing both the shape and intensity changes necessary to match the images. The algorithm outputs both a diffeomorphic deformation field and an intensity displacement which corrects the intensity difference caused by topological changes. Multiple sets of experiments are conducted on magnetic resonance imaging (MRI) with lesions from OASIS and ADNI datasets. These images are registered to either a brain template or images of healthy individuals. An exemplar case registering a template to an MRI with tumor is also given. The resulting deformation fields were compared with those obtained using diffeomorphic demons, where topological changes are not modeled. These sets of experiments demonstrate the efficacy of our proposed REM method for registration of brain MRI with severe topological differences.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:31 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.