By Topic

Optimized Data Fusion for Kernel k-Means Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shi Yu ; Dept. of Med., Univ. of Chicago, Chicago, IL, USA ; Tranchevent, L.-C. ; Xinhai Liu ; Glanzel, W.
more authors

This paper presents a novel optimized kernel k-means algorithm (OKKC) to combine multiple data sources for clustering analysis. The algorithm uses an alternating minimization framework to optimize the cluster membership and kernel coefficients as a nonconvex problem. In the proposed algorithm, the problem to optimize the cluster membership and the problem to optimize the kernel coefficients are all based on the same Rayleigh quotient objective; therefore the proposed algorithm converges locally. OKKC has a simpler procedure and lower complexity than other algorithms proposed in the literature. Simulated and real-life data fusion applications are experimentally studied, and the results validate that the proposed algorithm has comparable performance, moreover, it is more efficient on large-scale data sets. (The Matlab implementation of OKKC algorithm is downloadable from http://homes.esat.kuleuven.be/~sistawww/bio/syu/okkc.html.).

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 5 )