By Topic

Multistage Particle Windows for Fast and Accurate Object Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gualdi, G. ; Dept. of Inf. Eng., Univ. of Modena & Reggio Emilia, Modena, Italy ; Prati, A. ; Cucchiara, R.

The common paradigm employed for object detection is the sliding window (SW) search. This approach generates grid-distributed patches, at all possible positions and sizes, which are evaluated by a binary classifier: The tradeoff between computational burden and detection accuracy is the real critical point of sliding windows; several methods have been proposed to speed up the search such as adding complementary features. We propose a paradigm that differs from any previous approach since it casts object detection into a statistical-based search using a Monte Carlo sampling for estimating the likelihood density function with Gaussian kernels. The estimation relies on a multistage strategy where the proposal distribution is progressively refined by taking into account the feedback of the classifiers. The method can be easily plugged into a Bayesian-recursive framework to exploit the temporal coherency of the target objects in videos. Several tests on pedestrian and face detection, both on images and videos, with different types of classifiers (cascade of boosted classifiers, soft cascades, and SVM) and features (covariance matrices, Haar-like features, integral channel features, and histogram of oriented gradients) demonstrate that the proposed method provides higher detection rates and accuracy as well as a lower computational burden w.r.t. sliding window detection.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 8 )