By Topic

Dynamic Bit Encoding for Privacy Protection against Correlation Attacks in RFID Backward Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sakai, K. ; Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA ; Wei-Shinn Ku ; Zimmermann, R. ; Min-Te Sun

Today Radio Frequency Identification (RFID) technologies are applied in many fields for a variety of applications. Though bringing great productivity gains, RFID systems may cause new security and privacy threats to individuals or organizations. Therefore, it is important to protect the security of RFID systems and the privacy of RFID tag owners. Unfortunately, none of the existing solutions provide a complete defense against eavesdroppers who could monitor the communication between RFID readers and tags and recover the contents of tags. Based on our research, we propose two novel RFID backward channel protection protocols, namely dynamic bit encoding and optimized dynamic bit encoding. Our schemes are able to achieve high anonymity with limited communication overhead. Our extensive simulations show that both proposed schemes provide much stronger backward channel protection than existing techniques. In addition, analytical models were created and validated through comparisons with simulation results.

Published in:

Computers, IEEE Transactions on  (Volume:62 ,  Issue: 1 )