By Topic

Low Cost NBTI Degradation Detection and Masking Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Martin Omaña ; University of Bologna, Bologna ; Daniele Rossi ; Nicolò Bosio ; Cecilia Metra

Performance degradation of integrated circuits due to aging effects, such as Negative Bias Temperature Instability (NBTI), is becoming a great concern for current and future CMOS technology. In this paper, we propose two monitoring and masking approaches that detect late transitions due to NBTI degradation in the combinational part of critical data paths and guarantee the correctness of the provided output data by adapting the clock frequency. Compared to recently proposed alternative solutions, one of our approaches (denoted as Low Area and Power (LAP) approach) requires lower area overhead and lower, or comparable, power consumption, while exhibiting the same impact on system performance, while the other proposed approach (denoted as High Performance (HP) approach) allows us to reduce the impact on system performance, at the cost of some increase in area and power consumption.

Published in:

IEEE Transactions on Computers  (Volume:62 ,  Issue: 3 )