By Topic

Characterization of motion cardiac patterns in magnetic resonance cine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Martinez, F. ; BioIngenium Res. Group, Univ. Nac. de Colombia, Bogota, Colombia ; Manzanera, A. ; Santa Marta, C. ; Romero, E.

One of the most important tasks in Cardiac Magnetic resonance Cine (CMRC) consists in identifying and describing normal and abnormal dynamic heart patterns, a task usually performed by physicians. Segmentation and tracking may support decisions during a particular treatment, but their performance is dependent on the quality of the video. The acquired signal, on the other hand, is contaminated with noise coming from physiological movements and devices, resulting in cardiac blurred boundaries. This paper presents a novel method that automatically identifies flow heart patterns by establishing similarities between two consecutive frames to which a local jet feature analysis has been applied. Once a vector motion field is calculated, spatially connected regions with minimal variance are found as the sources of movement and different statistics objectively estimate movement patterns of these regions. The utility of this method is illustrated by comparing the temporal series of these regions between normal and abnormal patients.

Published in:

Image Information Processing (ICIIP), 2011 International Conference on

Date of Conference:

3-5 Nov. 2011