By Topic

Effect of deposition time SnO2 thin film deposited using thermal CVD for humidity sensor application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sin, N.D.M. ; NANO-Electron. Centre, Univ. Teknol. MARA, Shah Alam, Malaysia ; Kamaruddin, S.A. ; Musa, M.Z. ; Rusop, M.

The effect of SnO2 thin film thickness as humidity sensor application has been investigated. In this paper, Humidity sensitivity of SnO2 thin film at different thickness deposited by thermal chemical vapor deposition were presented. The electrical, optical and structural properties of SnO2 thin film deposited at different deposition time using thermal chemical vapor deposition (CVD) were investigated. The thin films were characterized using current-voltage (I-V) measurement (Keithley 2400) and photoluminescence (PL) measurement (Horiba Jobin Yvon-DU420A-OE-325 system) for electrical and optical properties respectively. The structural propeties has been characterized using field emmision scanning electron microscopy (FESEM) (JEOL JSM 6701F). The humidity measurement were conducted on Au metal contact deposited on SnO2 thin film that connected to a circuit using copper wire. The sensor were characterized using I-V measurement (Keithley 2400) in a humidity chamber (ESPEC SH-261) and the chamber has been set at same room temperature (25 °C) but different percent relative humidity (RH %) at 40 RH% to 90 RH. Deposition time for 60 minutes show high sensitivity . PL measurement revealed one peak at about between range red emission for all thin film. FESEM image show SnO2 nanoparticle growth on the nucleation site of gold catalyst.

Published in:

Industrial Electronics and Applications (ISIEA), 2011 IEEE Symposium on

Date of Conference:

25-28 Sept. 2011