By Topic

The Effects of Short-Circuit and Inrush Currents on HTS Transformer Windings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdul Rahman, M.A. ; Fac. of Designs & Creative Technol., Auckland Univ. of Technol., Auckland, New Zealand ; Lie, T.T. ; Prasad, K.

Rapid changes and developments are being witnessed in the transformer design technologies. The phenomenal growth of power systems has put tremendous responsibilities on the industry to supply reliable and cost-effective transformers. The advent of high-temperature superconductor (HTS) materials has increased interest in research and development of superconducting transformers with major projects being carried out worldwide. The major challenges in the design and development of HTS transformers are the modeling of short-circuit and inrush currents the transformer can withstand. Even though HTS technology is claimed to be more efficient, reliable, and eco-friendly, use of HTS transformers must be appropriately verified through the proper modeling of power system network.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:22 ,  Issue: 2 )