Cart (Loading....) | Create Account
Close category search window
 

Mutual Coupling Reduction of Two PIFAs With a T-Shape Slot Impedance Transformer for MIMO Mobile Terminals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shuai Zhang ; Dept. of Electromagn. Eng., R. Inst. of Technol., Stockholm, Sweden ; Buon Kiong Lau ; Yi Tan ; Zhinong Ying
more authors

An efficient technique is introduced to reduce mutual coupling between two closely spaced PIFAs for MIMO mobile terminals. The proposed mutual coupling reduction method is based on a T-shape slot impedance transformer and can be applied to both single-band and dual-band PIFAs. For the proposed single-band dual PIFAs, the 10 dB impedance bandwidth covers the 2.4 GHz WLAN band (2.4-2.48 GHz), and within the WLAN band an isolation of over 20 dB is achieved. Moreover, the dual-band version covers both the WLAN band and the WiMAX band of 3.4-3.6 GHz, with isolations of over 19.2 dB and 22.8 dB, respectively. The efficiency, gain and radiation patterns of the two-PIFA prototypes are verified in measurements. Due to very low pattern correlation and very good matching and isolation characteristics, the capacity performances are mainly limited by radiation efficiency. The single-band and dual-band PIFAs are also studied with respect to their locations on the ground plane. An eight-fold increase in the bandwidth of one PIFA is achieved, when the single-band PIFAs are positioned at one corner of the ground plane, with the bandwidth of the other PIFA and the good isolation unchanged.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:60 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.