By Topic

Efficient and Explicit Coding for Interactive Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We revisit the problem of reliable interactive communication over a noisy channel, and obtain the first fully explicit (randomized) efficient constant-rate emulation procedure for reliable interactive communication. Our protocol works for any discrete memory less noisy channel with constant capacity, and fails with exponentially small probability in the total length of the protocol. Following a work by Schulman [Schulman 1993] our simulation uses a tree-code, yet as opposed to the non-constructive absolute tree-code used by Schulman, we introduce a relaxation in the notion of goodness for a tree code and define a potent tree code. This relaxation allows us to construct an explicit emulation procedure for any two-party protocol. Our results also extend to the case of interactive multiparty communication. We show that a randomly generated tree code (with suitable constant alphabet size) is an efficiently decodable potent tree code with overwhelming probability. Furthermore we are able to partially derandomize this result by means of epsilon-biased distributions using only O(N) random bits, where N is the depth of the tree.

Published in:

Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on

Date of Conference:

22-25 Oct. 2011